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A B S T R A C T

Human mobility exerts significant influences on urban air pollution. Regrettably, most existing studies treated 
mobility as a homogeneous entity, neglecting that its effects may vary by travel purposes due to distinct 
spatiotemporal patterns. To address this gap, this study utilizes a trip purpose inference algorithm to classify 
mobility based on Beijing’s three-month taxi trajectory data and examines its impact on air pollution using 
interpretable XGBoost-SHAP models. The correlational analysis indicates the substantial contribution of wind, 
temperature, and precipitation to air pollution. Human mobility’s contribution is less significant than the 
abovementioned natural environments but greater than built environments, such as building density and height. 
In the long term, the negative correlation between work- and home-purpose mobility and pollution challenges 
the assumption that more mobility always increases pollution. Based on the case study in Beijing, this research 
eventually proposed possible practical implications and suggestions for sustainable urban planning and man
agement, including promoting mixed-use development and work-residence integration, creating urban wind 
corridors and open green spaces, and adopting low-emission transportation while avoiding blanket traffic re
strictions. This study uses interpretable machine learning models to clarify complex variable relationships, while 
future research could explore causality to better understand the underlying mechanisms.

1. Introduction

Air pollution has become one of the most severe environmental 
problems in urban areas worldwide, posing a serious threat to the resi
dents’ physical and mental health (Wu et al., 2020). Air pollutants such 
as PM2.5, PM10, NO2, SO2, CO, and O3 can cause respiratory and car
diovascular diseases, severely affecting the expectancy of lifespan 
(Fuller et al., 2022; Landrigan et al., 2018). Over the past two decades, 
air pollution has incurred a significant increase in the number of deaths 
globally, especially in developing and less developed countries (Cakaj 
et al., 2023; Niu et al., 2024), with about 2.9 million and 4.5 million 
premature deaths in 2000 and 2019 respectively, which is the highest 
among the premature death number caused by all types of pollution 
(Landrigan et al., 2018).

The origin of urban mobility-environment interactions can be traced 
to the first industrial cities, where concentrated human activities began 
systematically impacting local air quality. Many studies have 

demonstrated that human mobility has a significant influence on air 
pollution, particularly during the COVID-19 pandemic when widespread 
travel restrictions across numerous cities provided valuable opportu
nities for research (Bao & Zhang, 2020; Cai & Xie, 2007; Fu & Gu, 2017; 
Ghaffarpasand et al., 2024; Leroutier & Quirion, 2022; Rahman et al., 
2021; Wu et al., 2021). For instance, panel data from 44 cities in 
northern China revealed that government-imposed travel restrictions 
during the pandemic led to a 69.85 % reduction in human mobility and 
corresponding decreases in SO2, PM2.5, PM10, NO2, and CO by 6.76 %, 
5.93 %, 13.66 %, 24.67 %, and 4.58 %, respectively. This reduction in 
air pollution was strongly associated with a decrease in human mobility 
(Bao & Zhang, 2020).

In these studies, travel surveys, reports, or vehicle GPS data were 
primarily used to reflect human mobility (Ghaffarpasand et al., 2024). 
Among these, taxi trajectory data stands out for its high spatiotemporal 
resolution (Cai et al., 2014), allowing accurate tracking of daily indi
vidual trajectories and uncovering the heterogeneous characteristics of 
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travels (Cai & Xu, 2013; Huang et al., 2017; Sui et al., 2019; Zhai et al., 
2018). For example, Luo et al. (2017) analyzed travel patterns and 
emissions using trajectory data from approximately 13,600 taxis in 
Shanghai over a month, while Xia et al. (2023) leveraged large-scale taxi 
trajectory data to study the impact of traffic congestion on air pollution 
at varying times and locations. Regarding air pollution, existing studies 
mainly rely on ground monitoring data (Bao & Zhang, 2020; Ghaffar
pasand et al., 2024; Wu et al., 2021), remote sensing data, or model 
estimates derived from such data (Yu et al., 2020).

Contemporary challenges require understanding how differentiated 
mobility creates distinct environmental impacts because mobility en
compasses various types, each exhibiting distinct spatiotemporal dis
tribution patterns (Williams et al., 2012). Existing studies on the 
relationship between mobility and air pollution primarily focus on the 
impact of different transportation modes on air quality (Ercan et al., 
2022), such as shared mobility (Huang et al., 2022) and electric vehicles 
(Ferrero et al., 2016). These studies are often conducted at multi-city 
scales for analysis and comparison (Sharma et al., 2023), with limited 
attention to finer spatiotemporal scales within cities. Another line of 
research examines the heterogeneous exposure to air pollution associ
ated with mobility patterns among different population groups (Nyhan 
et al., 2019; Nyhan et al., 2016; Park & Kwan, 2017; Setton et al., 2011). 
For instance, Park & Kwan (2017) demonstrated that even individuals 
staying in an exact location may experience varying exposure levels at 
different times of the day due to spatiotemporal variations in environ
mental risk factors and human mobility. Similarly, individuals with 
differing daily movement patterns may be exposed to different ozone 
concentrations during the same period. While prior studies have estab
lished aggregate mobility-pollution relationships, the spatiotemporal 
specificity of purpose-driven impacts remains underexplored, particu
larly in megacities facing simultaneous economic growth and air quality 
mandates (Bell & Ward, 2000; Yan et al., 2013). Human mobility is 
inherently tied to its purpose, encompassing the destination and the 
activities undertaken, which shape unique temporal patterns and spatial 
associations with various urban functional zones (Schneider et al., 
2013).

Based on existing studies on the impact of mobility on air pollution, 
several urban planning and traffic management policy recommenda
tions have been proposed, including regulating urban travel activities 
(Wang & Liu, 2014), improving road infrastructure (Asamer et al., 
2016), and promoting low-carbon transportation (Wang et al., 2015). 
For example, Bouscasse et al. (2022) demonstrated through cost-benefit 
analyses under different scenarios that reducing private vehicle use can 
significantly lower air pollution-related mortality. In practice, some 
regions have introduced regulations targeting car usage and urban travel 
activities. For instance, Europe has implemented “Sustainable Urban 
Mobility Plans” (Pisoni et al., 2019), while major cities in China, 
Argentina, and Chile have enforced license plate-based driving re
strictions (Zhang et al., 2017) and license plate lotteries (Quan & Xie, 
2022) for years. These policies include banning vehicles based on the 
last digit of their license plate on certain weekdays, limiting the total 
number of new license plates issued each month, and randomly allo
cating plates via lottery. However, the effectiveness of such policies is 
not guaranteed. For example, noncompliance is common, often leading 
to negligible changes in travel behavior (Wang et al., 2014). Further
more, some commuters who previously did not drive may begin driving 
on unrestricted days due to reduced congestion from these policies (Jia 
et al., 2017). In terms of air pollution, the impact can even be coun
terproductive. Zhang et al. (2017) found that license plate-based re
strictions can reduce NO levels while significantly increasing NOx and 
O3 concentrations. Moreover, blanket restrictions have caused signifi
cant inconveniences to citizens’ daily lives (Jia et al., 2017).

In summary, the key gap in existing studies lies in their neglect of the 
heterogeneity of mobility in terms of travel purposes. To deepen our 
understanding of the intricate interplay between mobility and air 
pollution and promote sustainable cities, there is an urgent need to 

categorize human mobility according to its purposes in order to explore 
the distinct spatiotemporal distribution characteristics and potential 
impacts of various types of mobility on air pollution.

To address the identified research gap, this study adopts and en
hances a trip purpose inference algorithm to classify different types of 
human mobility based on long-term taxi trajectory data collected over 
three months in Beijing, provides a more comprehensive understanding 
of human mobility patterns, and investigates their spatiotemporally 
heterogeneous relationships with air pollution using interpretable 
XGBoost machine learning models. Beijing serves as an invaluable case 
study because it has been grappling with persistent air pollution for 
many years, and its urban planning features and the pollution control 
measures it once implemented share many similarities with those of 
other megacities globally. Ultimately, the study seeks to propose a 
refined urban traffic management policy and environmental planning 
strategy to mitigate urban air pollution, thus advancing the develop
ment of smart and sustainable cities (Asamer et al., 2016; Cai & Xu, 
2013). The specific objectives of the study are threefold: 

• To improve the trip purpose inference algorithm for a better un
derstanding of the heterogeneity of diverse human mobility;

• To investigate the spatial and temporal patterns of human mobility 
for diverse purposes and compare them with the patterns of different 
air pollutants;

• To analyze the spatiotemporal impact of diverse human mobility on 
air pollution.

2. Materials

2.1. Research area

By the end of 2016, Beijing was a major metropolis with a population 
exceeding 21 million permanent residents, spread across 16 municipal 
districts encompassing an area of 16.4 thousand square kilometers. The 
research area is delineated by the 187.6-kilometer-long 6th Ring Road 
(Beijing Ring Expressway), covering approximately 2267 square kilo
meters and is home to 90% of the population. The research area includes 
six urban districts, namely Xicheng, Dongcheng, Haidian, Chaoyang, 
Fengtai, and Shijingshan, and connects with six suburban districts: 
Changping, Shunyi, Tongzhou, Daxing, Fangshan, and Mentougou.

The study utilizes traffic analysis zones (TAZ) as the primary unit of 
analysis, a spatial unit designed explicitly for traffic-related studies and 
widely adopted by transportation researchers and planning institutions 
(Feng et al., 2022; Xu et al., 2019). Leveraging road network data from 
OpenStreetMap (OSM), the research area is divided into 2,213 TAZs, 
with sizes ranging from 0.017 to 124.4 square kilometers and an average 
size of 1.025 square kilometers (Fig. 1).

In January 2017, Beijing experienced a significant smog event, 
marked by a heavy air pollution alert issued at midnight on Dec. 30th, 
2016. This event set a historical record, with 25 consecutive days of 
highly severe air pollution (Gao et al., 2015, 2017; Wang et al., 2015). 
Therefore, the taxi trajectory data from this period is particularly 
valuable for this study.

2.2. Research data

The datasets used in this study comprise three parts. The indepen
dent variables are different types of human mobility, calculated based 
on taxi Origin-Destination (OD) and Points of Interest (POI) data. In 
addition, multi-source urban environmental data are adopted for control 
variables, including built and natural environmental factors. The 
dependent variable is the air pollution data.

2.2.1. Independent and control variables
Taxis constitute a significant portion of motorized road traffic ac

tivities and contribute substantially to carbon emissions (An et al., 2011; 
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Luo et al., 2017; Wang et al., 2015). Therefore, this study employs taxi 
trajectory data from Beijing spanning January to March 2017 (a total of 
90 days, including 61 workdays and 29 holidays) as an agency to reflect 
human mobility (Liu, 2017). This data includes GPS positions of 
approximately 30,000 taxis in Beijing, out of a total fleet of around 69, 
000 taxis as of late 2016 (Gong et al., 2016; Liu et al., 2017)). The 
dataset comprises 22,438,854 records, including latitude, longitude, 
UTC, direction, speed, and information on whether the vehicle is 
occupied or empty.

The OD data used in this study has been pre-processed by filtering the 
raw data based on vehicle occupancy to extract the UTC, latitude, and 
longitude of valid passenger pick-up and drop-off points within the 
research area. Additionally, 11,745 records that fall outside the study 
period were removed. The final dataset includes approximately 20.41 
million records for the entire city, with about 18.78 million records 
within the Sixth Ring Road, the study area. Then, POI data was incor
porated to develop the algorithm further for identifying trip purposes. 
This POI data was obtained from the open API of AMap in 2017, a 
leading map service provider in China known for its comprehensive and 
accurate mapping details (Xue & Li, 2020).

The urban environment plays a significant role in the distribution of 
air pollution (Cao et al., 2024; Han et al., 2022; O’Regan et al., 2022). 
Therefore, to investigate the spatial impact of human mobility on air 
pollution, additional multi-source urban environmental data were used 
as control variables, encompassing both built and natural environmental 
factors (Table 1). The built environment data include building density 
(BD), building height (BH), and floor area ratio (FAR), which are used to 
characterize development intensity and urban morphology and are 
calculated based on building vector data from map service providers (Gu 
et al., 2024; Li et al., 2021). The natural environment data include the 
Normalized Difference Vegetation Index (NDVI) and Digital Elevation 
Model (DEM) data, which characterize the greening level and topog
raphy of the city (Yang et al., 2021). The NDVI data were derived from 
2017 Landsat remote sensing satellite data with a spatial resolution of 30 
m (Yang et al., 2019). The DEM data were sourced from the Copernicus 
DEM released by the European Space Agency, with a spatial resolution of 
30 m (European Space Agency, 2024; OpenTopography, 2021). These 
data were later aggregated into the TAZ units in GIS for spatial corre
lation analysis.

On the other hand, weather conditions play a crucial role in the 
formation and dispersion of air pollutants (Kallos et al., 1993; Yen et al., 
2013). Consequently, meteorological data were incorporated as control 

variables (Han et al., 2022). These variables include daily lowest tem
perature (DLT), daily precipitation (DP), wind speed, and wind direction 
(Yen et al., 2013). Preliminary analysis revealed significant multi
collinearity between daily highest temperature (DHT) and daily lowest 
temperature (DLT). As a result, only the DLT was retained in the final 
models (Table 4). The DLT and DP data were obtained from the 
High-Resolution (1 day, 1 km) and Long-Term (1961–2019) Gridded 
Dataset for Temperature and Precipitation across China (HRLT) dataset 
(Qin & Feng, 2022; Qin & Zhang, 2022). Wind data were obtained from 
the ERA5-Land post-processed daily statistics spanning from 1950 to the 
present (Copernicus Climate Change Service, Climate Data Store, 2024). 
The raw data includes daily mean wind speeds in the u- and v-directions. 
Through data processing, the daily average wind speed and wind di
rection were calculated, with the wind direction expressed as the angle 
measured clockwise from true north.

Fig. 1. Research area and traffic analysis zones (TAZs) in the study.

Table 1 
Control variables adopted in the study.

Variable Abbreviation Description Unit

Built environmental factors (n=3)
Building density BD The proportion of the building 

footprint area relative to the total 
area of the study unit.

%

Building height BH The mean height of buildings 
within the study unit.

m

Floor area ratio FAR The ratio of the total floor area of 
all buildings to the total area of 
the study unit.

None

Natural environmental factors (n=6)
Normalized 

Difference 
Vegetation Index

NDVI The spatial distribution of green 
areas within the study unit, as 
determined by remote sensing 
data.

NDVI

Digital Elevation 
Model

DEM The mean elevation of the study 
unit.

m

Daily lowest 
temperature

DLT The daily lowest temperature 
within the study unit.

K

Daily precipitation DP The total daily precipitation 
within the study unit.

mm

Wind speed WS The daily average wind speed 
within the study unit.

m/s

Wind direction WD The daily average wind direction 
within the study unit.

degree
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2.2.2. Dependent variables
Six pollutants (PM2.5, PM10, NO2, SO2, CO, and O3) are commonly 

used to evaluate air quality (Xiao et al., 2018). In this study, the daily 
data of air pollution in Beijing during the research period is sourced from 
the High-resolution and High-quality Ambient Air Pollutants Dataset for 
China (CHAP). This dataset is developed using a combination of multiple 
big data sources, including ground-based measurements, satellite 
remote sensing products, atmospheric reanalysis, and model simulations 
to account for the spatiotemporal heterogeneity of air pollution (He 
et al., 2022; Wei et al., 2023; Wei et al., 2020, 2021; Wei, Li, et al., 2022; 
Wei, Liu, et al., 2022). The CHAP dataset includes major air pollutants 
such as PM2.5, PM10, NO2, SO2, CO, and O3, with a daily temporal res
olution and a spatial resolution of 1 km (10 km for NO2, SO2, and CO). It 
has been extensively applied and validated across various fields, 
including medical health, environmental science, atmospheric science, 
and remote sensing. Given the significant differences in the spatiotem
poral patterns of these pollutants, this study does not combine them into 
a single comprehensive index but instead analyzes each pollutant 
individually.

3. Methods

The methodological framework of this study is illustrated in Fig. 2. 
First, POIs were reclassified into nine types according to travel purposes 
(Gong et al., 2016; Li et al., 2021; Liu et al., 2023; Zhao et al., 2017). 
Next, the trip purpose inference algorithm (Furletti et al., 2013; Li et al., 
2021) was optimized and employed to categorize human mobility based 
on the POI data. Then, we analyzed the spatiotemporal distribution 
patterns of diverse human mobility and compared them with those of air 
pollution. Finally, we established a total of 18 XGBoost-SHAP models to 
assess the importance and correlation of eighteen variables, including 
human mobility, built environment, and natural environmental factors, 
with six air pollutants.

3.1. Optimized trip purpose inference algorithm

The essential idea of the trip purpose inference algorithm is to 

associate each drop-off point with nearby POIs based on the premise that 
passengers typically alight from taxis near their destination and then 
walk to engage in activities there (Furletti et al., 2013; Gong et al., 2016; 
Qian & Ukkusuri, 2015; Tian et al., 2024; Xing et al., 2020). The POIs are 
pre-classified and mapped into nine categories based on activity types 
(Table 3): home, work, transport, shopping, dining, leisure, education, 
medical, and other daily activities, following previous studies in the field 
(Jiang et al., 2012; Li et al., 2021; Liu et al., 2023; Zhao et al., 2023). The 
algorithm for each drop-off point involves three main steps, as illus
trated in Fig. 3: 1) filtering candidate POIs based on walking distance 
and operating hours; 2) calculating the visit probability for each 
candidate POI by considering distance, time, and the proportion of this 
specific POI type; 3) inferring the trip purpose by summing the proba
bilities of the corresponding POI points for each activity type. 

Step 1: Filtering the candidate POIs

The first step involves filtering the candidate POIs based on spatial 
and temporal conditions (Zhao, 2017). The spatial condition is that the 
distance between the POI Pi and the drop-off point D should be within 
walkable distance WD. The temporal condition requires that the POI be 
open around the drop-off time t. WD represents the maximum distance 
within which most drop-off points should be able to find at least one POI, 
reflecting passengers’ willingness to walk to the final destination (Li 
et al., 2021). In this study, WD is set as a constant value of 100 m based 
on preliminary results, as described in Fig. 4.

The opening hours H of each POI are determined based on the type of 
POI and whether the drop-off time falls on a workday or a holiday (Li 
et al., 2021; Zhao, 2017), as detailed in Appendix Table A.1. The 
filtering process is illustrated in Fig. 3. For example, if there is a drop-off 
point at 12 p.m. on a weekend, candidate POIs are represented as black 
dots, while non-candidate POIs are shown as gray dots. 

CandidatePOI = {Pi | d(Pi,D) ≤ WD, t ∈ H} (1) 

Given a list of POIs, those that meet both the spatial and temporal 
conditions are retained as candidate POIs for subsequent calculations. If 
no POI satisfies these conditions, the final probability for every activity 

Fig. 2. The methodological framework of the study.
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associated with this OD record is set to zero. 

Step 2: Measuring the visit probability of candidate POIs

The second step involves calculating the visit probability of each 
candidate POI, primarily based on the Gravity Model and Bayesian rules, 
taking into account factors such as distance, time, POI quantity, and 
capacity (Gong et al., 2016). Given a drop-off point D and the associated 
candidate POIs, the visit probability for each candidate POI Pi is defined 
as follows. 

Pr(Pi|D, t) =
Pr(D, t|Pi) × Pr(Pi)

Pr(D, t)
=

Pr(D|Pi) × Pr(t|Pi) × Pr(Pi)

Pr(D, t)

= Pr(D|Pi) × Pr(Pi|t) (2) 

Pr(Pi|D,t) denotes the probability that a passenger will visit Pi if 
dropped off at location D at time t. Given that the location D and time t 
can be considered conditionally independent, Pr(D,t|Pi) can be 
expressed as the product of Pr(D|Pi) and Pr(t|Pi), and Pr(D,t) equals to 
the product of Pr(D) and Pr(t). For a certain drop-off point, Pr(D) is 1. Pr 
(D|Pi) represents the probability that a passenger will drop off at loca
tion D if intend to visit POI Pi, which can be measured using the Gravity 
Model (Formula 3). The value of Pr(Pi|t) is derived from prior studies on 

the daily patterns of human activities in the city, with distinctions made 
between workdays and holidays according to the specific activity type 
(Jiang et al., 2012). 

Pr(D|Pi)∝G(D,Pi) = ADAid(Pi,D)− β
= ρiCid(Pi,D)− 1.5 (3) 

ρi =
φ(Pi.activity)

∑9
j=1φ

(
activityj

), jϵ{1,2, ...,9} (4) 

φ(activityk) =
number

(
candidatePOIactivity=k

)

number
(
POIactivity=k

) (5) 

In the Gravity Model, the distance decay coefficient β is set as 1.5, 
according to previous studies (Li et al., 2021; Zhao, 2017). AD and Ai are 
the attractiveness of D and Pi, in which AD is set as 1 to facilitate 
calculation, and Ai considers two factors: firstly, ρi is the distribution 
density of Pi’s type of activity (formula 4, 5); secondly, Ci is the service 
capacity of Pi. In this study, we adopted the service capacity index of 
different types of POI proposed by Li et al. (2021), as detailed in Ap
pendix Table A.1. Therefore, given a certain drop-off point and time, 
the probability of visiting each candidate POI is: 

Pr(Pi| D, t) =
G(D,Pi) × Pr(Pi|t)

∑n
j=1G(D,Pi) × Pr

(
Pj
⃒
⃒t
) (6) 

Step 3: Inferring the purpose of the trips

Given a drop-off point and time, the probability of engaging in 
different activities can be calculated as formula 7. Finally, the trip 
purpose of each record of OD data has nine values representing the 
probability of engaging in different types of activities, and their sum is 1. 

Pr(activityi) =
∑n

j=1
Pr
(
Pj|D, t

)
, Pjϵ

{
candidatePOIactivity=i

}
(7) 

Compared to existing research, this algorithm in this study has two 
key enhancements. Firstly, considering that different activities are likely 
to happen during different times within a day, the possibility of different 
daily activities through different times within a workday or holiday is 
taken into account (Huang et al., 2010; Jiang et al., 2012). Secondly, 
considering that the passengers are likely to visit multiple places after 
getting out of the taxi, the output is divided into nine values representing 
various types of activities rather than one (Li et al., 2021).

Fig. 3. Trip purpose inference algorithm framework.

Fig. 4. Percentage of trip destinations that contain at least one POI within 
different walking distances.
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3.2. Interpretable machine learning models

To investigate the relationship between human mobility and air 
pollution, this study constructs regression models from both long-term 
and short-term perspectives.

From a long-term perspective, the study examines the distribution of 
daily average density of human mobility and pollution concentration 
across different areas over the entire research period, using TAZs as the 
unit of analysis. OD points are linked to TAZs through spatial joins, and 
the density of human mobility for diverse purposes within each TAZ is 
calculated and used as the independent variable in the models. Control 
variables are listed in Table 1. The dependent variables are the con
centrations of six pollutants, PM2.5, PM10, NO2, SO2, CO, and O3, 
resulting in six regression models to compare outcomes. Due to signifi
cant differences in human mobility patterns between workdays and 
holidays, separate analyses are conducted.

From a short-term perspective, the study focuses on the daily vari
ations in human mobility density and pollution concentration within 
each TAZ unit, establishing regression models that use both TAZ and 
date as the units of analysis. The human mobility density within each 
TAZ unit on a given day is treated as the independent variable. The 
concentrations of the six pollutants within each TAZ unit on that day 
serve as the dependent variables.

3.2.1. OLS multiple linear regression model
Initially, the Ordinary Least Squares (OLS) model is employed to 

establish a multiple linear regression framework and perform multi
collinearity testing to select independent variables. Multicollinearity is 
assessed using the Variance Inflation Factor (VIF). A VIF value less than 
7.5 indicates that multicollinearity is not present, allowing the variables 
to be used in the regression model. The model’s fit is evaluated using the 
adjusted R-squared (R2) statistic. In cases where the model demonstrates 
poor fit, nonlinear models are considered to better capture the intricate 
relationships among the variables.

3.2.2. XGBoost machine learning regression model
Among the various nonlinear models available, this study selected 

the eXtreme Gradient Boosting (XGBoost) machine learning regression 
model, as proposed by Chen and Guestrin (2016), after comparing it 
with several commonly used alternatives. XGBoost is an enhanced 
version of the Gradient Boosting Decision Tree (GBDT) and offers more 
efficient model training (Gu, et al., 2024). The dataset was divided into 
training and validation sets, with 75% allocated to training and 25% to 
validation. Grid search parameter tuning with cross-validation was then 
conducted to identify the optimal parameters for the model, which were 
subsequently used to establish the model. The model’s performance was 
evaluated using adjusted R-squared and Root Mean Square Error 
(RMSE), with the results presented in Table 4.

3.2.3. Interpretation of nonlinear relationships with SHAP
While machine-learning models demonstrate strong performance 

and can partially indicate the relative importance of each feature, they 
often fall short in elucidating the precise impact of different independent 
variables on the prediction outcomes (Gu et al., 2024; Yang et al., 2024). 
To further clarify the contribution of each variable and its positive or 
negative effects within the model, this study introduces SHapley Addi
tive exPlanations (SHAP) to interpret the models.

Drawing inspiration from cooperative game theory, SHAP constructs 
an additive explanation model, treating all features as “contributors” 
(Lundberg & Lee, 2017; Yang et al., 2024). For each predicted sample, 
the model generates a prediction value, and the SHAP value represents 
the contribution of each feature to that prediction. Given the sample i is 
xi, the feature j of xi is xij, the model’s prediction for this sample is yi, and 
the baseline prediction for the entire model (typically the mean of the 
target variable across all samples) is ybase, the SHAP value is determined 
by the following equation. 

yi = ybase + f(xi1) + f(xi2) + … + f
(
xij
)

(8) 

f(xij) is the SHAP value of xij, which represents the contribution of xij to 
the final predicted value yi. When f(xi1)>0, it indicates that the feature 
increases the predicted value; otherwise, the feature reduces the pre
dicted value.

4. Results

4.1. Spatial patterns of human mobility and air pollution

This section mainly examines the long-term spatial distribution of 
daily average human mobility density and air pollution concentration 
within three months. The mobility density is calculated by summing the 
total amount of activities within each TAZ unit and dividing by the unit’s 
area. The results are grouped using the natural breaks classification 
method to visualize.

Figs. 5 and 7 illustrate the spatial distribution of human mobility 
density on workdays and holidays, showing a clear gradient from the 
city center to the suburbs, with most activity concentrated within the 
Fourth Ring Road. The Global Moran’s I analysis found that human 
mobility and air pollution both showed clustered distributions at a very 
high confidence level (p < 0.001). The deep-colored areas on the maps 
represent the highest category of mobility density, and the descriptive 
statistics in the study area are summarized in Table 2.

Further determination of the locations of cold and hot spot clusters 
was made through the Getis-Ord Gi* analysis. On workdays, home- 
purpose mobility is predominantly concentrated in residential areas 
within the Fourth Ring Road, with hot spots extending to suburban 
residential areas such as Huilongguan, Tiantongyuan, and Wangjing. 
Work-purpose mobility is concentrated in major business districts and 
technology parks, including the CBD, Lize, Shangdi, and Zhongguancun. 
Transport-purpose mobility primarily aligns with subway lines and 
major transportation hubs, such as Beijing South Railway Station and 
the Capital Airport. Shopping- and dining-purpose mobility clusters in 
commercial areas like Wangfujing, Sanlitun, Xidan, and Guomao in the 
city center. Leisure-purpose mobility concentrates around large leisure 
facilities, such as the Olympic Park. The spatial distributions of educa
tion- and medical-purpose mobility correspond to the locations of uni
versities and hospitals, with higher concentrations in the Haidian 
District, home to several prominent universities, and areas around 
Peking Union Medical College Hospital and Tiantan Hospital. These 
patterns suggest a strong correlation between human mobility and urban 
centrality, with the high-value areas of different mobility types closely 
aligning with the distribution of corresponding functional zones.

On holidays, the overall spatial distribution patterns of human 
mobility remain broadly consistent with those on workdays (Fig. 7), 
with significant changes observed primarily in terms of quantity 
(Table 2). The density of work-, transport-, and education-purpose 
mobility decreases notably during holidays, while dining- and leisure- 
purpose mobility increase significantly.

Figs. 6 and 8 depict the spatial patterns of six air pollutants, which 
are generally concentrated in the southeast and lower in the northwest. 
The average and maximum values and standard deviation within the 
study area are summarized in Table 2. On workdays, PM2.5 concentra
tions are elevated in the southern and eastern regions, while localized 
cold spots appear in the northwest areas within the Second and Third 
Ring Roads. Since PM10 is primarily composed of PM2.5, its distribution 
closely mirrors that of PM2.5. A localized hot spot for PM10 is observed 
near the northeastern Second Ring Road, while cold spots are observed 
in the central urban area within the Fourth Ring Road and the northern 
region of the Fifth Ring Road. NO2 concentrations are higher in the 
southern areas and lower in the north, with notable hot spots near 
Zhongguancun and Qinghe, close to the North Sixth Ring Road. Both 
SO2 and CO exhibit higher concentrations in the southern suburbs and 
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Fig. 5. Spatial distribution of daily average density of human mobility on workdays.

Table 2 
Descriptive statistics of human mobility density and air pollutant concentration in the study area.

Workday Holiday

Ave. Max. S.D. Ave. Max. S.D.

Human 
Mobility

Home (/km2) 74.203 3165.834 129.593 57.859 2569.461 104.449
Work (/km2) 104.744 3730.244 227.040 26.443 1246.34 60.799
Transport (/km2) 21.379 1611.088 61.130 12.917 941.822 36.819
Shopping (/km2) 21.528 1301.838 64.841 18.965 1313.371 58.274
Dining (/km2) 16.457 419.782 30.338 18.556 477.241 34.166
Leisure (/km2) 10.342 823.373 30.562 12.716 724.504 35.167
Education (/km2) 7.737 193.412 14.996 1.994 50.946 4.408
Medical (/km2) 8.468 743.789 33.014 5.191 457.767 18.023
Other (/km2) 2.967 90.490 5.351 6.869 170.347 11.301

Air 
Pollutant

PM2.5 (μg/m3) 84.530 90.635 2.974 96.110 102.706 3.427
PM10 (μg/m3) 119.106 129.289 5.629 131.409 143.168 6.553
NO2 (μg/m3) 60.873 66.467 2.920 56.278 61.897 3.087
SO2 (μg/m3) 17.006 22.611 2.079 20.707 26.217 1.945
CO (mg/m3) 1.585 1.838 0.096 1.508 1.848 0.116
O3 (μg/m3) 64.057 74.893 3.607 68.414 84.553 3.114
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relatively lower levels in central urban areas. In contrast, O3 concen
trations are higher in the northeastern and southeastern regions, with a 
prominent hot spot around Capital International Airport, located near 
the northeast side of the Fifth Ring Road.

During holidays, the average values for PM2.5, PM10, SO2, and O3 are 
higher than those observed on workdays, while NO2 and CO are lower 
than on workdays. Notably, areas with elevated concentrations of PM10 
and O3 are more concentrated near the Capital International Airport on 
holidays. At the same time, the distribution patterns of other pollutants 
remain largely consistent with those observed on workdays.

Juxtaposing the spatial patterns of human mobility against those of 
air pollution reveals a lack of conspicuous positive correlation between 
the two. Human mobility generally decreases outward from the city 
center to the suburbs, while air pollution often manifests as a relative 
void in central urban areas. However, in particular business districts, 
science and technology parks, and large transportation hubs, there is a 
noticeable synchronization of local hot spots, where travel activities and 
air pollution concentrations are elevated.

In addition, this study does not provide exhaustive details on the 
short-term spatial distribution of each activity for each day due to our 
primary focus on long-term patterns, limitations in paper length, and the 
fact that distribution patterns observed on a single day or even within an 
hour generally exhibit strong consistency with long-term patterns, 
differing mainly in terms of quantity.

4.2. Temporal patterns of human mobility and air pollution

This section aggregates the total volume of human mobility across 
the entire research area to analyze the temporal patterns (Table 3). The 
calendar heat map (Fig. 9) visualizes the daily distribution of human 
mobility relating to various activities, while the time series plot (Fig. 11) 
presents the hourly distribution, revealing detailed variations 
throughout the day. For comparison, trends in air pollution are also 
visualized with these plots (Figs. 10, and 11). Although issues with the 

raw taxi data affected the accuracy of hourly variations for five days, 
these data still accurately reflect the average daily levels of human 
mobility (Fig. 11).

The total volume of different types of human mobility (Table 3) 
aligns with existing studies and validates the accuracy of the trip pur
pose inference algorithm (Li et al., 2021; Zhao, 2017). On workdays, the 
proportions of home and work-purpose mobility are significantly higher 
than those of other mobility types. On holidays, the volume of work and 
education-purpose mobility decreases markedly while home, shopping, 
dining, leisure, and other daily activities increase.

Fig. 9 shows that work-, transport-, education-, and medical-purpose 
mobility exhibit a pronounced midweek peak, whereas dining, leisure, 
and other daily activities peak on holidays. The research period spans 
the Chinese Spring Festival, during which all types of mobility signifi
cantly decreased (January 27 - February 2).

The time-series graph (Fig. 11) delineates a consistent daily rhythm 
in all mobility types, characterized by pronounced peaks during the 
morning and evening commutes. However, there are discernible varia
tions between the mobility patterns on workdays versus holidays and 
between standard weekends and the Chinese Spring Festival period.

The calendar heat map (Fig. 10) and time-series graph (Fig. 11) 
reveal that the concentration of six pollutants follows similar fluctuating 
patterns, cycling approximately every one to two weeks. PM2.5, PM10, 
NO2, and CO exhibit analogous distribution characteristics, with 
elevated levels at the beginning of the year persisting for over a week. 
Then, the concentrations of these pollutants, along with SO2, show a 
significant increase on Jan. 28th and after the Chinese Spring Festival 
(Jan. 28th - Feb. 2nd). In contrast, O3 displays a gradual, long-term rise 
from January to March, with prominent peaks observed on Mar. 18th 
and 19th.

4.3. Impacts of human mobility on air pollution

This section develops two levels of regression models, resulting in a 

Fig. 6. Spatial distribution of daily average concentration of air pollution on workdays.

W. XU and X. GU                                                                                                                                                                                                                              Sustainable Cities and Society 126 (2025) 106411 

8 



total of 18 models: 1) Long-term models that focus on the spatial dis
tribution across different TAZs over the entire research period using 
aggregated daily data, with each model comprising 2,213 entries; 2) 
Short-term models that examine the spatiotemporal distribution for 
each day and each TAZ, with each model comprising 199,170 entries.

4.3.1. Comparison of the performances of regression models
First, the Ordinary Least Squares (OLS) model was employed for 

correlation analysis and multicollinearity testing. Based on the Pearson 
Correlation Coefficient and Variance Inflation Factor (VIF), all the var
iables are significantly correlated and free of multicollinearity.

However, as a classical linear regression model, OLS is limited to 
depicting linear relationships and struggles to capture non-linear in
teractions. The model’s fit was assessed using the adjusted R-squared 
value, revealing that the results for models 1-1-c, 1-2-c, 1-2-d, and the 
first five short-term models were relatively low (Table 4). Consequently, 
XGBoost regression models were developed to enhance model perfor
mances. The regression evaluation metrics in Table 4 demonstrate that 
the XGBoost models achieved higher adjusted R-squared values and 

lower Root Mean Square Errors (RMSE).

4.3.2. Relative importance of different variables
To interpret the XGBoost models, this study employed the Tree 

Explainer, a SHAP interpreter specifically designed for tree-based 
models, including the XGBoost models. The Tree Explainer was used 
to compute the Shapley values for each variable. Subsequently, the 
importance of each variable was ranked based on the average of the 
absolute Shapley values, and this ranking is visualized using bar plots 
(Fig. 12).

The contributions of human mobility to air pollution consistently 
rank fourth or lower across all 18 models (in both long-term and short- 
term and for all six pollutants). In contrast, natural environmental fac
tors such as wind speed (WS), wind direction (WD), daily lowest tem
perature (DLT), daily precipitation (DP), DEM, and NDVI were 
consistently ranked as the most important variables in all models, with 
their mean absolute SHAP values significantly exceeding those of other 
variables. Built environmental factors, including building density (BD), 
building height (BH), and floor area ratio (FAR), typically rank just 

Fig. 7. Spatial distribution of daily average density of human mobility on holidays.
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below the relatively high-importance mobility variables, placing them in 
the mid-range among all 18 variables.

Although the mean absolute SHAP value of a single mobility variable 
was not as high as that of natural environmental factors, the combined 
mean SHAP values of the nine different types of mobility were still not 
negligible, as they exceeded those of built environmental factors. 
Furthermore, the mean SHAP values of mobility in long-term models 
were significantly higher than those in short-term models.

Across all models, home- and work-purpose mobility consistently 
ranked as the most important among the different types of mobility. 
Beyond these two variables, the importance of other mobility types 
varied depending on the model. In long-term workday models, 
transport-purpose mobility was relatively important in NO2 and CO 
models, shopping-purpose mobility was prominent in SO2 and O3 
models, leisure-purpose mobility was significant in PM2.5 models, and 
medical-purpose mobility showed higher importance in NO2 models. In 
long-term holiday models, leisure-purpose mobility and shopping- 
purpose mobility were relatively more important. In short-term 

models, the importance was primarily concentrated on home- and 
work-purpose mobility, with education-purpose mobility being notable 
in PM2.5, PM10, and SO2 models.

4.3.3. The impacts of diverse human mobility on air pollution
This study further utilizes SHAP values to assess the impact of each 

variable on air pollution within the XGBoost models. As shown in 
Fig. 13, the x-axis position represents the SHAP values for each variable, 
indicating the variable’s impact value on the model’s output in each 
case. If the point is on the right side of the y-axis, it means a positive 
effect on the prediction. Conversely, it has a negative impact on the 
prediction if it is on the left. The color coding reflects the actual value of 
each variable. Vertically, the variables are ranked according to their 
relative importance, as illustrated in Fig. 12.

The local dependence plots (Fig. 14) illustrate the non-linear effects 
of human mobility with the highest relative importance on the con
centration of six air pollutants. The three plots for each model are ar
ranged from left to right according to the relative importance of the 

Fig. 8. Spatial distribution of daily average concentration of air pollution on holidays.

Table 3 
Average daily volume and proportion of diverse human mobility on 61 workdays and 29 holidays.
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corresponding mobility type. It is evident that, in the long-term models, 
the non-linear effects of mobility on air pollution are much clearer 
compared to the short-term models.

High values of home-purpose mobility (depicted in red) predomi
nantly fall on the left side of the y-axis in most models where it ranks 
highly in relative importance, while its low values (shown in blue) are 
mainly positioned on the right side in the models (Fig. 13). This pattern 
suggests a clear negative correlation between home-purpose mobility 
and air pollution. The only exception occurs in the long-term holiday 
model, where, as home-purpose mobility increases, its relationship with 
O3 is initially negative, but once a certain threshold is surpassed, the 
correlation becomes predominantly positive (Fig. 14).

Work-purpose mobility in long-term workday models primarily 
shows a negative correlation with NO2, CO, and O3 and a positive cor
relation with PM10. In holiday models, it shows a negative correlation 
with PM2.5. In other models, work-purpose mobility does not exhibit a 
significant correlation with air pollutants.

Transport-purpose mobility in the long-term workday model shows a 
negative correlation with CO, and its relationship with NO2 initially 

becomes positive as mobility density increases, then shifts to negative, 
and eventually becomes less pronounced. In the holiday model, it shows 
a relationship with PM2.5 that transitions from positive to negative.

Shopping-purpose mobility in the long-term workday model is pri
marily negatively correlated with O3, while in the holiday model, it 
shows a moderate positive correlation with PM10. Leisure-purpose 
mobility initially indicates a negative correlation with PM2.5, PM10, 
and CO in the long-term holiday model, followed by a slightly positive 
correlation. It primarily shows a transition from positive to negative 
correlation with O3.

As summarized in Section 4.3.2, the relative importance of other 
types of mobility in the models is relatively low. Dining-purpose 
mobility, as density increases, first shows a negative correlation with 
O3 and then a slight positive correlation in the long-term holiday model. 
Education-purpose mobility in the long-term workday model initially 
shows a positive correlation with PM10, which turns negative once a 
certain threshold is exceeded. Medical-purpose mobility in the long- 
term workday model shows a moderate negative correlation with 
NO2. Other daily activity-purpose mobility in the long-term holiday 

Fig. 9. Calendar heat map of human mobility (holidays highlighted with black frames).

Fig. 10. Calendar heat map of air pollution.
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model shows a moderate negative correlation with SO2.
For control variables, wind speed primarily shows a negative corre

lation with air pollution. The relationship between wind direction and 
air pollution is less clear. Both daily lowest temperature (DLT) and daily 
precipitation (DP) are generally positively correlated with air pollution 
in the long-term models, except for their negative correlation with O3. In 
the short-term models, DLT and DP are primarily negatively correlated 
with air pollution, except for their positive correlation with O3. DEM is 
mainly negatively correlated with air pollution in the long-term models, 
though it exhibits a more complex non-linear effect. In the short-term 
models, DEM is primarily positively correlated with air pollution, 
except for its negative correlation with O3. Interestingly, in models 
where the relative importance of NDVI is higher, NDVI is positively 
correlated with air pollution, suggesting that simply increasing green 
space may not necessarily improve air quality.

5. Discussion

5.1. The correlation between diverse human mobility and air pollution

Numerous studies have highlighted the significant impact of human 
mobility on air pollution, yet they often overlook the heterogeneity of 
mobility based on travel purposes (Bell & Ward, 2000; Schneider et al., 
2013; Yan et al., 2013). This study categorizes human mobility for 
diverse purposes to explore the distinct spatiotemporal distribution and 
its impact on air pollution. The results reveal a clear correlation between 
specific types of human mobility and air pollutants, with significant 

Fig. 11. Time-series graph illustrating the hourly volume of human mobility and air pollution levels.

Table 4 
Model performance results of the OLS and XGBoost models.

Regression Model OLS Model XGBoost Model

Adj. 
R-square

RMSE Adj. 
R-square

RMSE

1. Long-term models ​ ​ ​ ​
1-1. Workdays ​ ​ ​ ​
1-1-a: PM2.5 0.825 1.244 0.944 0.698
1-1-b: PM10 0.757 2.776 0.910 1.679
1-1-c: NO2 0.118 2.743 0.800 1.269
1-1-d: SO2 0.564 1.373 0.818 0.900
1-1-e: CO 0.582 0.062 0.871 0.035
1-1-f: O3 0.692 2.002 0.926 0.960
1-2. Holidays ​ ​ ​ ​
1-2-a: PM2.5 0.677 1.849 0.921 0.946
1-2-b: PM10 0.605 3.947 0.915 1.897
1-2-c: NO2 0.188 2.717 0.870 1.109
1-2-d: SO2 0.329 1.539 0.810 0.860
1-2-e: CO 0.463 0.083 0.897 0.037
1-2-f: O3 0.443 2.364 0.873 1.025
2. Short-term models ​ ​ ​ ​
2-a: PM2.5 0.243 72.830 0.951 18.551
2-b: PM10 0.210 88.114 0.946 23.055
2-c: NO2 0.372 24.001 0.948 6.882
2-d: SO2 0.279 11.539 0.934 3.483
2-e: CO 0.249 1.275 0.958 0.300
2-f: O3 0.512 19.260 0.962 5.393
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differences observed across different variables and models.
In general, the impact of human mobility on air pollution is less 

significant than that of natural environments but more important than 
that of built environments. Moreover, when using average data over 

three months for workdays or holidays, the relative importance of 
human mobility’s impact on air pollution is higher than on daily data. 
The direction of the correlation between specific purpose mobility and 
air pollution is also clearer in the long term. This may be because, on a 

Fig. 12. Importance of different variables for six air pollutants in the long-term and short-term models.

W. XU and X. GU                                                                                                                                                                                                                              Sustainable Cities and Society 126 (2025) 106411 

13 



daily timescale, weather conditions exert a more direct and noticeable 
influence on the formation and dispersion of air pollutants, thereby 
masking the direct effect of human mobility (Archer et al., 2020). For 
example, higher wind speeds on a given day are more likely to facilitate 

the reduction of pollution levels (Kallos et al., 1993; Yen et al., 2013).
Home- and work-purpose mobility have a more substantial impact 

on air pollution across all models, while leisure-purpose mobility shows 
a notable increase in relative importance in holiday models. These types 

Fig. 13. SHAP values of independent variables for air pollution.

W. XU and X. GU                                                                                                                                                                                                                              Sustainable Cities and Society 126 (2025) 106411 

14 



of mobility also represent the largest share of volume among all travel 
purposes. However, for certain specific pollutants, other types of 
mobility with smaller shares, such as transport, dining, and education, 
also play an essential role.

The specific types of human mobility with high relative importance 
mostly show a negative or non-linear correlation with air pollution from 
a long-term perspective. This suggests that an increase in mobility is not 
always directly associated with a rise in pollution levels, which aligns 
with some previous studies (Archer et al., 2020; Munir et al., 2021) but 
may challenge the common intuition that all types of mobility should 
increase pollution. The correlational analysis results offer strong statis
tical support for this counterintuitive association. However, further 
research is needed to explore the underlying causal mechanisms: 
whether certain types of purpose-specific mobility reduce air pollution, 
whether lower pollution levels encourage increased mobility, or 
whether a more complex interplay of additional variables is involved. 
Therefore, Various explanations are possible: First, local air pollution 
may have a reverse effect on long-term human mobility patterns (Qiao 
et al., 2024), as people tend to engage in activities in lower-pollution 
areas or reduce travel during high-pollution periods (Xia, 2024). For 
example, certain residential and office areas may already have low 
pollution levels due to environmental factors, so even if mobility in
creases, the overall pollution level remains relatively low. Second, a 
higher proportion of mobility for specific purposes may result in less 
pollution compared to other types of mobility, or it could reduce the 
volume of other mobility types. This could be related to different travel 
behaviors, such as driving distance and time, as well as the activities at 
the destination. For example, returning home or transferring to public 

transportation with lower per capita emissions could reduce pollution 
(Archer et al., 2020).

Moreover, the impact of human mobility on different air pollutants 
varies. For example, work-purpose mobility shows a negative correla
tion with PM2.5 but a positive correlation with PM10. Transport-purpose 
mobility on workdays exhibits a significant negative correlation only 
with CO, with no notable correlation with other pollutants. This may be 
due to the fact that different air pollutants have distinct sources and 
propagation characteristics (Elminir, 2005; Fernández et al., 2021; Xiao 
et al., 2018). Additionally, similar to other studies, O3 in this research 
shows particularly distinct behavior compared to other pollutants 
(Marković et al., 2008; Venter et al., 2020; Xiao et al., 2018). For 
instance, leisure-purpose mobility during holidays generally shows a 
negative correlation followed by a slight positive correlation with most 
pollutants, while the relationship with O3 is the opposite, starting with a 
positive correlation and then turning negative. Similarly, control vari
ables, including daily lowest temperature, daily precipitation, and DEM, 
also display an inverse correlation with O3 compared to most other 
pollutants.

5.2. Practical implications and suggestions

Based on the above findings from the Beijing case study and existing 
research (Asamer et al., 2016; Wang & Liu, 2014; Wang et al., 2015), this 
study proposes several recommendations for urban planning and traffic 
management policies to develop smarter and more sustainable cities.

The spatial distribution of mobility for different purposes largely 
aligns with the spatial distribution of urban functional zones, while the 

Fig. 14. Non-linear effects of human mobility with highest relative importance on six air pollutants.
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temporal distribution follows the patterns of daily human activities 
(Schneider et al., 2013; Yan et al., 2013). Therefore, the spatiotemporal 
distribution characteristics of mobility for different purposes presented 
in this study can help urban planners and policymakers better under
stand when specific urban functional zones are more active (Liu et al., 
2023; Wang et al., 2022; Wu et al., 2021; Yu et al., 2022). It is evident 
that mobility for specific purposes often peaks at particular times of the 
day (Fig. 11), potentially leading to congestion and pollution concen
trated in specific urban areas, especially within single-functional urban 
zones. Although the goal of this study is not to establish an exact air 
pollution forecasting model, the spatiotemporal patterns observed over 
the long term can help policymakers more efficiently and intuitively 
predict areas in urban environments that may experience pollution is
sues (Baklanov & Zhang, 2020; Forehead & Huynh, 2018; Pantusheva 
et al., 2022; Zhong et al., 2016). For example, time-based dynamic 
traffic management could help reduce congestion and emissions in 
localized regions (Meng et al., 2020).

The negative correlation between work- and home-purpose mobility 
and air pollution challenges the traditional assumption that “more 
mobility equals more pollution,” suggesting that there is no need for 
“one-size-fits-all” restrictions on mobility, thereby minimizing the 
impact on residents’ travel convenience (Jia et al., 2017; Wang & Liu, 
2014; Zhang et al., 2017). Instead, we can reduce urban air pollution by 
promoting electric taxis and other low-emission transport options, 
especially for high-frequency travel purposes such as commuting to 
work and home (Orset, 2019; Sun et al., 2021). Additionally, policies 
that promote the integration of residential and workplace areas can 
improve air quality (Babalik-Sutcliffe, 2013; Zhang & Zhang, 2023). By 
encouraging development in areas with shorter distances between home 
and work, such as creating mixed-use zones that combine residential and 
office spaces, long commutes can be reduced, leading to lower pollution 
exposure and better air quality.

Finally, natural environmental factors, such as wind speed and urban 
green spaces, have strong correlations with air pollution. Increased wind 
speed helps to disperse pollutants and reduce their concentration, sug
gesting the promotion of “urban wind corridors” (Huang et al., 2021; 
Yang et al., 2020). Additionally, merely increasing green space may not 
significantly reduce pollution. Different types of green spaces have 
varying effects on air quality, with open, well-connected green areas 
that facilitate air movement likely to be more beneficial in reducing 
pollution (Venter et al., 2024; Wu & Chen, 2023; Yang et al., 2020).

5.3. Limitations and future works

The primary methodological framework of this study focuses on 
correlations, which may limit the ability to infer explicit causal mech
anisms, as discussed in Section 5.1. For example, improved air quality 
may encourage certain types of mobility (Cui et al., 2019; Park & Kwan, 
2017; Tang et al., 2024; Zhang et al., 2019). Future research could 
benefit from more rigorous causal inference frameworks, such as 
structural causal models and the potential outcomes framework, to 
better understand the underlying mechanisms driving these correla
tions. Besides, the synergistic effects of different variables and potential 
confounding variables warrant further investigation. For instance, 
examining how built environmental factors and human mobility factors 
interact to influence air pollution could provide deeper insights into the 
varying performance of the same independent variable across different 
models (Yi et al., 2022; Zeng & He, 2023).

Taxis were employed as a proxy to represent the broader pollution 
externality of human mobility in this study. This includes not only direct 
emissions from various transportation modes but also the pollution 
arising from activities conducted at destinations. However, while taxi 
trajectory data offers advantages in spatiotemporal resolution, it only 
captures a portion of urban mobility. Future research could integrate 
data from other transportation modes, such as private cars, buses, and 
bicycles, to further refine the comprehensive analysis of how urban 

mobility impacts air pollution (Guo et al., 2022; Zhao et al., 2023; Zhu 
et al., 2024). Additionally, constrained by data availability, this study 
examined human mobility over a three-month period, primarily 
covering winter. Although this duration is relatively long compared to 
existing studies and provides some insight into long-term trends 
(Fig. 11), it does not offer sufficient evidence for seasonal or cross-year 
variations. Therefore, future studies could encompass data spanning a 
year or even several years, allowing for the identification of patterns 
over a longer time scale (Benchrif et al., 2021; Shi et al., 2023). The 
development of such datasets is also urgently needed. Moreover, as the 
air pollution data in this study were limited to daily resolution, future 
research could explore the characteristics of air pollution at more 
refined temporal resolutions (Zhang & Li, 2024).

This study uses Beijing as a case study not only to address its specific 
challenges but also to provide insights and serve as a reference for cities 
worldwide, as discussed in Section 5.2. However, practical implications 
and policy recommendations should be adapted to the specific context of 
each city rather than applied universally. Future research could incor
porate a broader range of cities across different regions and urban types 
to enhance the reliability and generalizability of the findings.

6. Conclusion

As air pollution becomes an increasingly severe environmental 
challenge in cities worldwide, there is a growing need to better under
stand the relationship between human mobility and air pollution. 
Compared to prior studies, this research provides a more comprehensive 
exploration of the spatiotemporal heterogeneity of purpose-specific 
human mobility, revealing the complex and sometimes counterintui
tive relationship between urban mobility and air pollution.

Using fine-scale taxi trajectory data over three months in Beijing and 
interpretable machine-learning models, our correlational analysis re
veals significant associations between purpose-specific mobility patterns 
and air pollution variations in Beijing. Key findings include the sub
stantial contribution of wind, temperature, and precipitation to air 
pollution in the regression models. Human mobility’s contribution is less 
significant than that of natural environments but greater than built en
vironments. Additionally, in the long term, the impact of human 
mobility is more pronounced, with clearer directions of correlation. 
Notably, the negative correlation between work- and home-purpose 
mobility and pollution challenges the assumption that more mobility 
always leads to more pollution. The study also highlights significant 
differences in the correlation between various pollutants and indepen
dent variables, particularly O3.

Based on these findings, the study suggests several recommendations 
for urban planning and management. These include promoting mixed- 
use development and supporting work-residence integration in func
tional zoning, encouraging the creation of urban wind corridors and 
open green spaces in environmental planning, and promoting low- 
emission transportation while avoiding blanket traffic restriction mea
sures. However, these suggestions may be further validated through 
comparative studies in other regions and practical exploration.

In conclusion, this study in Beijing serves as a typical case for 
reevaluating and improving existing facility planning and traffic control 
policies in cities facing similar pollution problems, contributing to more 
effective data-driven management and the advancement of smart and 
sustainable cities.
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